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Abstract 

A deformed differential calculus is developed based on an associative ,-product. In two dimen- 
sions the Hamiltonian vector fields model the algebra of pseudo-differential operator, as used in 
the theory of integrable systems. Thus one obtains a geometric description of the operators. A dual 
theory is also possible, based on a deformation of differential forms. This calculus is applied to a 
number of multidimensional integrable systems such as the KP hierarchy, thus obtaining a geomet- 
rical description of these systems. The limit in which the deformation disappears corresponds to 
taking the dispersionless limit in these hierarchies. 
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1. Introduct ion 

Is there a common structure behind all integrable systems? There are many different types 

of  integrable systems: ( 1 + 1 )- and (2 + 1 )-dimensional evolution equations (such as the KdV 
and KP equations), chiral and harmonic map equations, integrable dynamical systems (such 

as the Halphen and Kovalevskaya top equations), integrable non-linear ordinary differential 

equations (such as the Chazy and Painlev6 equations) for example, and all these have 

various properties associated with their integrability (see, for example, [AC]). However, 
there is very little in the way of  general theory, where the apparently disparate properties 

of various individual integrable systems could be understood in a consistent and coherent 
way. Indeed, there is no universal definition of what integrability actually is. 
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One idea, proposed by Ward [W], is that such system may all be obtained from the 

(anti)-self-dual Yang-Mills equations and their generalisation by a process of dimensional 
reduction. For example, the KdV, NLS, sine-Gordon ad Liouville equations may all be ob- 

tained from the (anti)-self-dal Yang-Mills equations with S L ( 2 ,  C)-gauge groups, the only 
difference being the choice of symmetry group and space-time signature [W, MS]. The key 

idea is not so much the self-dual Yang-Milis equations themselves, but the existence of a 
Penrose transform for such fields. Under such a transform the fields 'disappear' into the 
holomorphic geometry (certain holomorphic vector bundles over regions of an auxiliary 

complex manifold known as twistor space) [W77]. More prosaically, this provides a geo- 
metric framework for the Riemann-Hilbert problems used in the construction of solutions 

to the duality equations. The existence of this transform has been conjectured to be behind 
the idea of integrability. 

The paradigm (and the original example of such a transform) case from the (anti)-self- 
dual vacuum equations [Pen]. The following formalism is due to Gindikin [G]. Consider 

the following system of first-order equations depending on a parameter r = {r0, rl } c C2; 

~ o l ( r )  J ~ I k =(,OoZ" 6 + . . .  +O)kTl , 

2p k 2p k w Z P ( r ) = C O  0 r(j + . . ' + W  k l" 1, 

where w~ are 1-forms. Let g2k(v) be the bundle of 2-forms, 

$2k(r )  = o ) l ( r )  Ao)Z('t  ") + . . .  + o 9 2 p - l ( r  ) Ao)ZP(T),  

satisfying the conditions: 
- the (p + 1)th exterior power of J2 k vanishes; 

- the pth exterior power of O k is non-degenerate; 
- dg2k(r) = 0. 
The bundle of forms then encodes the integrability of the original system. In the special 

case k = 1, p ---- 1 the metric defined by 

1 2 1 2 
g = CO00) 1 -- 0)10) 0 

has vanishing Ricci tensor and (anti)-self-dual Weyl tensor. The form 12 is related to various 
structures on the corresponding curved twistor space. 

One major problem with this geometric approach to the understanding of integrable 
systems is to find how systems such as the KP equation 

(4Ut -- 12UUx -- Uxxx)x = 3Uyy 

fit into the scheme. There have been various attempts, some erroneous, to do this, the 
problem stemming from how to give a geometrical description to the pseudo-differential 
operators used in the derivation of the KP equation and its hierarchy. However, though there 
are problems with the KP equation itself, these problems vanish in a particular limit (the 
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dispersionless limit) of the KP equation and one obtains a geometric description of this 

limiting case. Explicitly, let 

X = ~ x ,  Y = ~ y ,  T = E t ,  

U ( X ,  Y, T )  = u ( x ,  y ,  t ) ,  

then the KP equation becomes, in the limit E ---> 0 the dispersionless (or dKP equation): 

( 4 U T  -- 1 2 U U × ) x  = 3 U y y .  

This also is integrable, but the description does not use pseudo-differential operators but a 
more geometrical description in terms of vector fields and differential forms. 

The central idea of this paper is the development of a deformed differential calculus based 
on an associative ,-product and its application to the theory of integrable systems. One will 

obtain an elegant description of the KP hierarchy in terms of vector fields and differential 
forms rather than the more usual pseudo-differential operator formalism. The advantage of 
this approach will be twofold: firstly, one retains a geometric description, so, for example, 
one can go to a dual description in terms of differential forms; secondly in the limit in which 

the deformation disappears one recovers the dKP equation directly without the need of the 
somewhat singular limit outlined above. 

This deformed calculus with be derived in Section 2 and used in Section 3 where various 

examples of multidimensional integrable systems (an integrable deformation of the (anti)- 
self-dual vacuum equations, the KP hierarchy and the Toda hierarchy) will be studied. It will 

turn out that all these systems may be written in terms of a 2-form g2 satisfying the equations 

dg2 = 0, g2Ag2 = 0  

in analogy to Gindikin's bundle of forms. In Section 4 the geometry of the KP hierarchy 

will be examined in more detail. This work raises a number of further questions, some of 
which are outlined in Section 5. 

2. Deformed differential geometry 

A Poisson manifold .A/[ is endowed with a bilinear skew-symmetric Poisson bracket 
defined, for u, v c C~( .M) ,  by 

• . Ou Ov 
{u, v}eB = w ' J - - - -  (1) 

OX i OX j 

and with the additional property that 

{{f, g}PB, h}e8 -F {{g, h}pB, f lPa  + {{h, f}PB, g}PB = 0, 

this begin known as the Jacobi identity. Further, it will be assumed that .AA is a symplectic 
manifold, that is a Poisson manifold for which the matrix w'J is of maximal rank. It follows 
that the dimension of M must be even, so 

d im(M)  = 2N 
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for some integer N. It will be assumed that 09 i j  is constant and that a basis has been chosen 

in which 

(0,o) (2)lJ ~ - -  I N  

This structure may be used to define a deformation of  the above Poisson bracket. For 

u, v E C ° ° ( M )  one defines a new product 

u * v = exp u(x)v(X)x=i l  
Ox i OxJ 

or, on expanding the exponential 

K S  O s t t  O s v  
U * 1) = (2) i l j l  " ' "  O) i s j s  (2) 

s=0 2Ss! Oxi~ "'" Oxi~ OxJJ . . .  OxJ~ " 

With this the deformed, or Moyal bracket, is defined as [Mo] 

U , U - -  I) 4t l, l 
{u ,  v }  - (3) 

K 

L e m m a  1. For constants c and funct ions  u, v c C o o ( M ) :  

(a) limx-~0 u * v = uv, 

(b )  c * u = cu, 

(c) * is associative, 

(d) lim~-,o{u, v} = {u, U}p B, 

(e) {u, v} is bilinear, skew-symmetric and satisfies the Jacobi identity. 

Proo f  Straightforward from definitions (1) and (2). Note that the Jacobi identity follows 

from the associativity of the .-product .  [] 

The original motivation lbr  the introduction of  such a bracket came from a description 

of  quantum machanics using phase space variables [Mo]. Here K is replaced by - i h ,  and 

h ~ 0 corresponds to taking the classical limit. 

It is necessary to introduce another product. For u, v 6 Coo(.A,4) define 

Oo l ( 2 s  0 2 S  u 0 2 s  v 

S-" o)i  Ljl  . . . oo i2s J2s It 0 U ( 4 )  
sz"'=o 22'(2s + 1)! Oxi' "'" Oxi2~ OxJ' • •. OxJ, 

L e m m a  2. For constants c and funct ion u, v 6 Coo(A,l): 

(a) u o v = v o u ,  

(b) c o u = c u ,  

(c) limK--,0 u o v = uv, 

(d) o is not associative, 

(e) 2 d O c u o v ) / d t ¢  = u * v + v , u .  

Proo f  Again, these results follow from definitions (2) and (4). [] 
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With this o-product a deformed, or quantum, differential calculus will be constructed. A 

similar calculus has recently been constructed by Fedosov [Fe] using the ,-product rather 

than the o-product. The reason for the introduction of  the new product will become apparent 

later (the motivation coming from the application of this calculus to multidimensional 

integrable systems) and rests on the following result. 

Proposition 1. For u, v • C~(A4) ,  

Ou Ov 
M ~ o - -  = {u, v}. 

OX r OX s 

Proof Follows from definitions (3) and (4): 

Ou Ov 
(.o rs o - -  

Ox r ax s 
K2s 0 2 s + l  0 2 s + l  V x;-' (.oil j l  . . . o)i2sJ2s (.Ors U 

z...., 22S(2s + 1)T Oxi, . . .  O x i 2 s O X  r O x J l  . . .  O x J 2 s O x  s 
s = 0  

2 x-~ K 2 s + l  O2s+l  U 0 2 s + l  U 
= _ o) i l  Jl . . . o)i2s+l J2s+l 

x Z..., 22s+l (2s + 1) I Oxil . . .  axi2s+l OxJl . . .  OxJzs+l 
s=O 

K 

In the limit x ~ 0 this reduces to definition (1). [] 

In the simplest case (N = 1) these formulae may be easily rewritten using the explicit form 
ofo9 ij, coordinates x 1 = x, x 2 = y: 

U * V =  - -  (__1)  j S n s - j • j .  , ~ j a s - j  
s=0 2ss! "= j ux ~yUOxOy v, (5) 

oo tc2s 2s ( 2; ) . 2 s - j . j  . j . 2 s - j  
u o v = ~ - - ] 2 2 s + l ( 2 s + l ) ! ~ - ' ~ ( - - 1 ) J  Ox oyUOxOy v, (6) 

s = 0  j =0  

oc K 2 s + l  

{u, v} = ~ 22s+ l(2s + 1)! 
s = 0  

( ) X Z ( - - 1 ) J  2S + l : ~ 2 s + l - j ; ~ j  , n j n 2 s + l _ j ~  ' (7) 
j =0 j ~'x vy .  ~x u v 

for functions u(x,  y), v(x, y) • C ~ ( A 4 ) .  

Example  1. Let A4 = T 2, the 2-torus. Functions on T 2 may be expanded in terms of basis 

functions 

era ---- expi (mlx  + m2y). 
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With these one obtains from (5)-(7): 

em * en = e x p ( l x ( m  × n))em+n, 

{era, en} : sinh ½K(m × n ) em+n ,  

½K(m x n )  sinh 
em o en : 2 em x n, 

z(m x n) 

where m x n = r n 2 n  I - m l r l 2  . 

Given such a symplectic manifold and product one may define tangent and cotagent 
bundles TA,4 and T*.A//, the inner product between basis elements (O/Ox  i)  and d x  j being 
given by 

The first difference is the formula for the inner product between general elements X ~ T p . M  
:¢ andw 6 T~.A,4, 

(X, co) \ O x i ,  Wj d x  j = X i ,j ~ x i ,  d x  k , = X i o o ) i ,  

i.e. the multiplication being done with the o-product. Similarly, given a vector field X and 

functon f one defines 

X f  = X i o O f  
Ox i , (8) 

again using the o-product. The general procedure should already be apparent: the only 
change to the standard, or undeformed, theory is when objects are combined, this being 
done with the o-product. Thus in the K ---> 0 limit the standard theory is recovered. One 

may extend this new calculus to general tensor fields. However the extension to an exterior 
differential calculus is of more interest. 

The d-operator, which maps r-forms to (r 4- 1)-forms is defined as normal. For example, 

given a 0-form (i.e. a function) the l-form d f  is defined by the relation 

(X ,  d r )  = X f  

for all vector fields X. From this follows the formula 

d f =  Of. d x i .  
Ox t 

The wedge product combines forms and so this will be done using the o-product, Explictly, if 

A = Ait . . . i  l, d x  I A . . .  A d x  it', 

B = B j l . . %  d x  jl A . . .  A d x  iv ,  

then 

A A B = Al i  I ...ip o Bjl  ""Ju] dx i l  A . • • A d x  it' A d x  j l  A . • • A d x  jq. 
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2. Suppose dim .A4 = 2 (i.e. N = 1). Then for functions f (x ,  y), g(x, y) 

d f =  f x d x + f y d y ,  

and hence 

dg = gx dx + gy  dy 

d f  A dg= ( f x e g y -  f y e g x ) d x A  d y , = { f , g } d x A  dy. 

Note that this uses the symmetry property of the o-product. Care must be taken in higher 

dimensions since, as the o-product is not associative, A A (B/x C) :/: (A A B) /x C for 

arbitrary forms A, B and C. 

Having defined an exterior differential calculus one may define another intrinsic differ- 

ential object, namely a Lie derivative Ex corresponding to some vector field X 6 TAd. 

On functions 

£ x f  = X f  

and on vector fields 

o y i  O X  i 
(£xy)i = X j o -- Y J  o - -  

OX j o x J  " 

This will also be written as £x  Y = [X, Y], and called the commutator of two vector fields. 

Using the symmetry of the o- product it follows that the commutator is antisymmetric. One 

may extend the definition to more general objects such as tensor fields in such a way that 

the theory is consistent. For example, for any p-form w and vector field X, 

d(£xo)) = £x(do)). 

Normally one has the relations 

[X, V]f -- X ( r f )  + r ( x f )  = O, 

[[X, Y], Z] + [[Y, Z], X] + [[Z, Y], X] = O. 

The proof of these results uses the associativity of normal (i.e. underformed) multiplication, 

and so do not hold for the deformed definitions based on the non-associative o-product. 

However for an important class of vector fields these results do hold. Given a function f 

C~(.A4) (the Hamiltonian) the corresponding Hamiltonian vector field Xf is defined by 

• .Of  0 
X f  = o f  J 

OX i OX j . (9) 

Strictly speaking these are local Hamiltonian vector fields, Hamiltonian vector fields having 

to be defined globally on Ad. 

Lemma 3. For functions f, g, h ~ C°°( M ) and corresponding Hamiltonian fields X f ,  X g 
and Xh: 
(a) Xfh = {f, h}, 
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(b) [Xi, Xg] = X{i,g }, 
(C) [Xf, Xg]h = Xf(Xgh) - Xg(Xfh), 
(d) [[Xf , Xg], Xh] -Jr- [[Xg, Xh], Xf] -Jr- [[Xh, Xf ], Xgl = O. 

Proof 
(a) Follows from definitions (8), (9) and Proposition 1. 

(b) We have 

• . 

I x : ,  x J  = x :  o ax--7 - x~ o oxJ 

Of O (  Og)  

-~o*J-~-~, o o :  i 

wr i a {a~l~j Of Og ~ i a. :  \ -gZ~* o ~ : = xl.:,~j. 

This uses the antisymmetry of O) i j  and the symmetry of the o-product. 

(c) We have 

[Xf , Xgih = X{f,g}h = {{f, gih} 

= If ,  {g, hii  - {g, I f ,  hil  = Xf(Xgh) - Xg(Xfh).  

This uses result (b), the Jacobi identity for the Moyal bracket and the antisymmetry of 

the Moyal bracket (Lemma 1). 

(d) Follows from the Jacobi identity for the Moyal bracket (Lemma 1). [] 

Example 3. For two-dimensional manifolds .A/[ 2 these Hamiltonian vector fields generate 

the Lie algebra of area preserving diffeomorphisms of  the manifold where the area element 

is dx A dy and the composition of  two Hamiltonian vector fields is defined to be the Lie 

bracket of  these fields. Explicitly, the field Xf  generates the infinitesimal transformation 

x -+ x - ~fy, y ~ y + ef t .  This Lie algebra will be denoted by sdiff, c (.A//2). 

The differential objects constructed have been intrinsic to the manifold. One should 

be able to introduce a connection on A/ /and define a covariant differentiation and hence 
curvature. A similar programme has been carried out using the ,-product by Vasiliev [V]. 

However for the application of this calculus to the theory of integrable systems such a 

structure will not be required. 
This *-product is essentially unique. For a product 

OG 

f , g  = f g  + Z t c r Q r ( f ,  g) 
r = l  

(where the Qr a r e  bilinear differential operators) to be associative places strong restrictions 

on the type of  higher-order terms that may be added. Further, the requirement that the bracket 
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defined by {f, g}t = ( f  . g  _ g .  f ) / K  should reduce to the Poisson bracket in the x --~ 0 

limit introduces further restrictions and from these considerations follow various results on 

the uniqueness of the Moyal bracket [A,BFFLS,F 1]. However these uniqueness results only 

state that any such deformations are equivalent to the Moyal bracket; there are apparently 
different structures which, after various changes of variable, become the Moyal bracket. 

For example one may define the following associative .-product (in the N = 1 case): 

x s Os f OSg 

f ' g =  s! Ox s Oy s" 
(IO) 

s~O 

This also defines a bracket 

{ f , g } ' - -  f ' g - - g ' f ,  (11) 
K 

which reduces to the standard Poisson bracket in the x ~ 0 limit. This new bracket will be 
called the Kupershmidt-Manin bracket [K,Ma]. As above, one may define a corresponding 

o-product 

K.S s 
Z Z os--mOY s--m m = Oy 0 x g, f o g  ( s +  1)! f (12) 
s = 0  m = 0  

so that 

Ou Ov 
co rs o - -  = {f, g}' 

OX r OX s 

and hence an equivalent deformed differential geometry based on these new structures. The 

form of the ,-product is somewhat simplier then that given by (5), though the dependence 
on the sympletic structure of .AA is less transparent. The importance of these new products 

comes from their relationship to the algebra of pseudo-differential operators. A pseudo- 
differential operator P is an operator of the form 

finite 

P = Z aj(x)OJ' 
j=-oz 

where the multiplication of two such operators uses the generalised Leibnitz rule 

oz m ( m -  1 ) . . . ( m - k -  1)0ka3m_ k Om a = aO m -k- 
k! 

4 

k=0  

The set of such operators will be denoted by 79. The symbol of a pseudo-differential opeator 
is a function of two variable defined by 

/ '  finite .'~ finite 

sym ( Z aj(x)OJ I = =~oc Oj(x)yj" 
~,] =--oo / j 

It has the important property that for all P, Q c 7 9 

sym(PQ)  = sym(P)  *~c=1 sym(Q), 
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where *,c=l denotes the ,-product (10) evaluated at x = 1. It follows from this that 

! 
sym([P,  Q]) = {sym(P), sym(Q)},c=l, 

where [P, Q] = P Q  - QP.  Thus one may replace pseudo-differential operators and 

its corresponding algebra by functions of two-variables where the composition of two 

functions is done with the Kupershmidt-Manin bracket evaluated at x = 1. More details of  

these algebraic properties may be found in [F-FMR]. Using the ideas developed above one 

may give these pseudo-differential operators a geometrical interpretation. 

Theorem 1. Let 7-[ be the space of  Hamihonian vector fields" (where N = 1) whose 

Hamihonians have Laurent expansions in the variable y, 

{ finite } 
7-(= Xf: f = Z aj(x)YJ " 

j=-oo 

Then the map 

l : 7"/{constants} ~ 7-( 

given by 

t(P) = Xsym(P) 

is an isomorphism. Moreover 

t([P, Q]) = [Xsym(P), Xsym(Q) ] = X{sym(P),sym(Q)}~K=l, 

where the Lie bracket of  vector fields is evaluated using the product oK= ! given by (12) 
evaluawd at K = 1. 

Proof Straightforward. Given a Hamiltonian vector field one can construct the correspond- 

ing Hamiltonian (up to a constant) and hence a pseudo-differential operator whose symbol 

is the Hamiltonian. Conversely, t (P  + c) = t (P)  for all P E 7'. The last part of the theorem 

follows from the properties of the symbol map. [] 

The set of  Hamiltonian vector fields clearly forms a Lie algebra under the composi- 

tion defined by the Lie bracket. One may define the adjoint representation as follows. For 

functions f ,  g, F 6 C ~ ( . M )  define 

a d ( f ) g  = {f ,g},  A d ( F ) g  = E , g ,  F -1, 

the connection between the two coming from the deformed exponential 

expx f = I + . . . - *  f .  
n=0 ' ' n--terms 

So, if F = expx f ,  

Ad(F )g  = exp, c (ad( f ) )g  
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(this uses the Baker-Campbell-Hausdorff formula). On vector fields, 

ad(Xf)Xg = X{f,g}, Ad (F)Xg  = XF,g.F-I. 

These will be used in Section 4 to describe the dressing properties of the KP hierarchy. 

The residue of a pseudo-differential operator P = ~ an O n is defined by 

res(P) = a-1. 

It follows that 

'J res(P) = res(sym(P)) = ~ sym(P) dy, 

where the residue of the function sym(P) is the normal residue, regarding sym(P) as 

a complex function of y. The residue has many uses, in particular in the study of the 

Hamiltonian properties of integrable systems. 

3. Applications to integrable systems 

In this section a number of multidimensional integrable systems will be studied using the 

geometric structures developed in Section 2. It will be shown that these systems may all be 

written in terms of a 2-form g2 which satisfies equations 

dI2 = 0, g2/x ~ = 0 .  

These equations encode the integrability conditions for these systems in an elegant geometric 

manner. 

Let M be a sympletic manifold with some associated ,-product. In applications one will 

require an extended manifold 

= M e 7  

where T consists of an extra set of coordinates (for example the 'times' in a hierarchy 

of evolution equations). The manifold A4 may be thought of as a phase space and in 

the applications considered here this will be two-dimensional. The *-product extends to a 

product on .A4 by 

u(x,t) * v(x,t) = exp ( Kwij OOX i o~fJO ) U(X't)v(i't)[x=~ 

(where x = {x i } are coordinates on A4 and t are coordinates on T), that is, the dependence 

on the coordinates on 7" is ignored. The differential calculus outlined in Section 2 similarly 

extends to the manifold._A4. One difference is that Xf  will refer to a Hamiltonian vector 
field on .A4 whose Hamiltonian function depends on the coordinates on A4, 

X f  : (.o ij Of(x~ t) 0 
Ox t OxJ ' 

i,e. a time dependent Hamiltonian vector field on .A//, where the 'times' are the 
coordinates on 7-. 
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3.1. The anti-self-dual vacuum equations 

The anti-self-dual vacuum equations govern the behaviour of complex 4-metrics of sig- 

nature (+, +,  +,  +)  whose Ricci tensor is zero and whose Weyl tensor is anti-self-dual. 
Since these curvature conditions are invariant under changes of coordinates there are many 

ways to write these equations. One particular form of the equations uses the face that such 
metrics are automatically K/ihler and so may be written in terms of a single scalar function 
£2, the K/ahler potential. The curvature conditions then give the equation governing the 
potential (known as Plebanski's 1st Heavenly equation [P1]): 

025-2 32 02~d 02a'2 
- -  - -  1 .  ( 1 3 )  

3x32 3yO~, 3x3~ 3y32 

The corresponding anti-self-dual Ricci-flat metric is 

32£2 
g ( . Q )  _ o x i O x  ~ j  d x  i d.~j  ' .~i = ~, ~, X j = X, y. (14) 

This equation can, in principle, be solved using a Penrose transform - the orignal non- 

linear graviton construction [Pen]. Although not realised at the time, the existence of such a 
transform makes (13) into a completely integrable system, an important, and rare, example 
of a multidimensional integrable system. As such it has all the properties one would expect 
of such a system, an infinite number of conservation laws [$93] and an associated hierarchy 

[$95b], for example. A Lax pair for this equation was derived by Newman et al. [NPT] 

and later interpreted by Park [Pal as that for a two-dimensional topological chiral model 
with gauge potentials in the infinite-dimensional Lie algebra s diff(.M 2) for some two- 

dimensional manifold .M. 

The equation may be written as 

{S2x, S2y }pB = 1, 

where the Poisson bracket is defined by 

{f, g}PB = f2g~ -- f~g~:. 

The equation that will be studied in this section is an integrable deformation of this equation, 

where the Poisson bracket has been replaced by the Moyal bracket (3) 

{sex, s2y} = 1. ( i s )  

The space A,4 will have coordinates {X, ~} (with composition using the products (2) and 
(4)) and the space 7- will be taken to be [~2 (or possibly C 2) with coordinates {x, y}. 
This deformed system (15) will be studied using the deformed calculus developed in Sec- 
tion 2. It will turn out that it sharesmany of the features and properties of the underformed 
system (13). 

Let/ . /and F be the following vector fields on T.A,4: 

O O 
U = z - - + x f ,  V = z - - + x  u, 

3x 3y 
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where ~. 6 C P  l is a constant known as the spectral parameter. The system of equations for 

the function 7r E C~(A4), 

u ( ~ )  = o, v ( ~ )  = 0 

(or, equivalently, 

,k~x + {f, ~} = 0, ~.~y + {g, ~1 = 0), 

is overdetermined unless the integrability condition 

[u, Vl = 0 

holds. Here [ , ] is the Lie bracket of vector fields. If  these equations are satisfied, then 
one has two independent solutions L and M for ~ which satisfy the equation {L, M} = 1. 

Note that the above equations may be written in the following ways: 

L/(L) = / a t ( m )  = O, V(L) = V(M) = O, 

or 

(b/, dL) = (L/, dM) = O, (V, dL) = (V, dM) = O. 

The above integrability conditions are satisfied if the functons f and g satisfy the equations 

f y - g x  =0, { f ,g}= 1. 

The first equation implies the existence of a scalar function 12 such that f = S2x, g. = a"2y 

and with these the second equation becomes the deformed Plebanski equation (15). This 

shows that this may be interpreted as a two-dimensional chiral model with gauge potentials 
in the Lie algebra s diffx (.A42). 

In [$92] the vector f ields/ . /and V were interpretated as operators: 

oo K2S+l 

Ll=~.Ox + E 22s+l(2s + 1)! 
s=0 

( ) × ÷ '  

j=O J ' 

K2s+l 

V=)~Oy + Z  22s+1(2 s + 1)! 
S ~ 0  • 

2s+l ( 2 s + l ) o 2 s + l _ j o j _ ~ j o 2 s + l _  j 
X E (--l)J j=O j ~ y~go~ y . 

The geometrical approach used here is much simplier, and the manipulations using the 
o-product which lead to Eq. (15) are almost transparent, deviating very little from the 
underformed calculation which leads to Eq. (13) (to achieve such a result was one of the 
original motivations in the development of  the deformed calculus). Another advantage of 



268 I.A.B. Strachan/Journal of Geometry and Physics 21 (1997) 255-278 

the geometrical over the operator based, approach is that one can go over to a dual description 
in terms of differential forms on T* (.M). 

Let $2 be the 2-form 

g2 = dx m dy + £(X2x~ dx m d2 + X2x~ dx A d~ + ,.Qy2 dy m d2 

+~2y~ dy A d~) + £2 d2 A d~. 

This clearly satisfies the condition dI2 = 0, and in addition 

$'~ m ~(~ = ) . 2 ( a Q x 2  o $2yy - -  a"2x~ o $'2y 2 - -  l )dx  A d2 m dy m d f  

= £2({~x, X2y}- l )dx m d2 A dy A d~ 

= 0  

by virtue of (15). Thus the Lax pair, and hence the integrability of this deformed system is 
encoded into the equations 

d O = 0 ,  $ ? A O = O .  

Further properties of this system have been found. In [$92] a perturbative solution in 
powers of tc was constructed. On writing 

o~ 
,.Q = Z Kn~(2n, 

n=O 

one obtains Plebasnki's equation (13) for S20 and an infinite number of linear equations for 

the t2n, n > 0, of the form 

m~2oJ2n = Sn[$20 . . . . .  ,Qn-l], n = 1, 2 . . . . .  oc. 

The operator rqo is the wave operator on the space-time given by the metric g(12) given by 

Eq. (14) and the function Sn is some known function of its arguments. A similar procedure 
may be applied to a Moyal-algebraic deformation of Plebanski's 2nd heavenly equation 
[PPRT]. In [C] a symmetry reduction of this system was studied and in [T94a] the dressing 
transform (using a Riemann-Hilbert factorisation in the corresponding Moyal loop group) 
was constructed. As mentioned earlier, one may study the conservation laws, symmetries 
and hierarchies associated with Plebanski's equation and these results still holds, under the 

replacement of the Poisson bracket by the Moyal bracket, for the deformed system (15). 
A slightly more general framework may be achieved by observing that the vector fields 

Ox, Oy, Xf and Xg which make up the vector fields/4 and l) all preserve the volume form 
o9 = dx A dy A d2 A d~ on .M, as in the construction of self-dual metrics [MN]. 

3.2. KP hierarchy 

The KP hierarchy is defined as follows. Let 12 be the pseudo-differential operator 

12 = 0 + y ~  un(x,t)O -n, 
n = l  
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where t = {q, t2. • • }. The evolution of the fields un (x,  t) with respect to the times t is given 
by the Lax equations 

0 £  
- -  = [ ~ n ,  • ] ,  ( 1 6 )  
Otn 

where 

/3n =[ /2"]+,  n =  1,2 . . . .  

and [69]+ denotes the projection onto the purely differential part of the pseudo-differential 

operator O. Similarly, [O]_ denotes the projection onto purely negative powers, so 
O = O + + O _ .  

Let the coordinates on M be {x, ~} and times t be coordinates on T.  The*- and o-products 
on .A4 will be given by Eqs. (10) and (12) evaluated at x = 1, and the t will be dropped 

on the corresponding bracket for notional convenience. Taking the symbols of the above 
operators gives the following functions on A/I: 

o o  

L = sym(£) = )~ + Z Un (x,  t))~ -n,  Bn = sym(/3n). 
n=l 

Note that 

sym(£ n) = sym(£) *K=J "'" *x=l sym(£)  

(which does not equal sym (£)n) which Kupershmidt [K] denotes by L *n (see also [F-FMR]). 

The Lax equation (16) becomes the vector field equation 

L n ( L ) = O ,  n =  1,2 . . . . .  ~ .  (17) 

Here Ln e Tjk4 is the vector field 

0 
Ln -- X B n 

atn 

and the operations are performed with x = 1. At this point this condition will be dropped, 
thus obtaining a K-dependent KP hierarchy. The Lax function L remains unchanged, but 

the Bn acquire x dependence, since they are now defined by the formula 

Bn = [L*n]+ 

(and so reduce to the previous definition if x = 1), where + denotes the projection onto 
non-negative powers of ~.. This has the advantage that one may recover the dispersionless 
KP hierarchy in the x --+ 0 limit without the need for rescaling variables. 

Example 4. The first few equations in the K-dependent KP hierarchy (17) are [K90]: 

B1 : ~ . ,  

B2 = ) 2  _+_ 2U2, 

B3 ----- )3 + 3XUl + 3u2 + 3xUl,x, 
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which leads to the evolution equations 

U I.t2 = 2U2,x + x u  l,xx, 

u2.t2 = 2u3,x + 2UlUl,x -k- xU2,xx, 

Ul,t3 = 3u3,x + 6UlUl, x q- 3xU2,xx + x2lt l ,xxx 

(the tl-flows are trivial). These show the x-dependent terms. On eliminating u2 and u3 one 

obtains the KP equation 

(4Ul,t3 - 12UlUl,x - X2Ul,xxx)x = 3ul,t2t2. 

One may obtain an equivalent KP hierarchy by using the Moyal ,-product and bracket rather 

than the Kupershmidt-Manin ,-product and bracket [K,S95a]. One obtains the functions 

BI -~Z,  

B2 = ~2 _.}._ 2u 1, 

B 3 = k  3+3~.u l  + 3 u 2  

(x-dependent terms only appear in the Bn for n > 3) and evolution equations 

Ul, t2  = 2u2,x, 

U2,t2 = 2u I u l,x + 2U3,x, 

Ul , t3  = 6UlUl,x -~ 3U3,x + l x2ul,xxx.  

This system also leads to the KP equation on eliminating u2 and u3, and on redefining the 

fields it is easy to see that these two systems are equivalent. Note that in both cases the limit 

x --+ 0 one obtains the dispersionless K P equation directly without further rescaling of  the 

variables. 

An alternative form of the KP hierarchy is based on the zero-curvature conditions (which 

follow from the Lax equation (16)) 

a t3 ,  aBm 
- -  + [ t~ , , t 3m]  = 0, 

0tm 0tn 

or equivalently 

0 Bn 0 B m 
- -  + {B . ,  Bin} = O. ( 1 8 )  

Otm Ot, 

Note that this is the condition of  the vector fields Ln to commute, [Lm, Ln] = 0 for all 
m , n =  1,2 . . . . .  ~ .  

These zero-curvature relations may be encoded in a 2-form g2 defined by 

g 2 =  dZA d x +  Z d B n / x  dtn. 
n = 2  
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This form satisfies the following equations: 

dg2 = 0, I2A g2 = 0 .  

The first is obvious. One has to be careful in evaluating the second equation (see Example 2), 

but one obtains 
0(3 

[ O Bn O Bm + { Bn , Bm } ] d)~ A dx A dtm A dtn 
_1 m,n~2 

and hence g2 A g2 = 0 if and only if the zero-curvature relations (18) hold. The geometry 

of the KP hierarchy will be discussed further in Section 4. 

3.3. Toda hierarchy 

The definition of this hierarchy is very similar to the definition of the KP hierarchy. The 

Lax operator is 

(30 

£ = e a + ~ U n ( X , t ) e  -na 
n = O  

(note the range of summation) and the evolutions of the fields are given by the Lax equation 

a£  
- -  = [ B . ,  z : ] ,  
St. 

where 

/3n = [ £ n ] + ,  n =  1,2 . . . . .  oo 

and [69]+ denotes the projection onto positive powers of e ° of the pseudo-differential op- 
erator O. The operator e ° acts as a shift operator, 

en° f ( x )  = f ( x  + n). 

The geometric description of the hierarchy is obtained in the same way as above. Taking 
symbols of the operators give 

o ~  

L = sym(£), = e ~ + Z e-n~' 
n = 0  

Bn = sym(Bn) 

and the above Lax equation becomes 

OL 
- {Bn,  L } .  (19) 

Otn 

Once again the condition x = 1 will be dropped, so composition will be done using the 
Kupershmidt-Manin , -  and o-products (10) and (12), so now the Bn are defined by the 
equation Bn = [L'n]+ where + dentoes the projection onto non-negative powers of e ~, as 
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in the K-dependent KP hierarchy. In the limit x --~ 0 one obtains the dispersionless Toda 

hierarchy. One difference between the hierarchy and the KP hierarchy is that the evolution 

equations for the fields contains an infinite number of K-dependent terms. However these 

may be recombined in terms of shift operators, as the following example will show. 

ExampLe 5. One possible truncation of this hierarchy is to set Un = 0 for n _> 2, so that 

L = eZ + uo + u l e  - z ,  B1 = e X + u o .  

The evolution equations for the fields u0 and u l are given by 

OL 
- -  = { B ~ ,  L } ,  
Ot 

where the bracket is the Kupershmidt-Manin bracket (11) and, for greater generality, the 

x = 1 condition has been dropped. 

This gives the equations 

1 __Os  1 u l ( x )  = 
u 0 , r ( x ) =  x- s! x -  x ' 

s ~ 0  

Ul't(x)--Ul(X)II--~(--l)SKSx s =0  S! OxS 1 Uo(X)~" Ul(X)[Uo(X)--Uo(X--K)]K 

and on eliminating u0 one obtains the Toda lattice equation 

ul(x + x )  - 2Ul(X) + Ul(X - x )  
(log Ul (x )tt = tc 2 

Instead of using the Kupershmidt-Manin bracket one could use the Moyal bracket. This 

gives the slightly different equations 

u o , t ( x ) = - x  22s+l(2s + 1)! 02s+l ul(x) 
s =0  

= -  u t ( x +  x ) - u l ( x -  x )  , K 

_ -  _u, [uo x + - uo x - 
K 

On eliminating uo one again recovers the Toda lattice equation. Note that with the 
Kupershmidt-Manin bracket one obtains a forward/backward difference operator while 

the Moyal bracket gives a central difference operator. In both cases x acts as the lattice 
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spacing and as x --+ 0 one recovers the dispersionless Toda equations (since both these 

brackets are deformations of  the Poisson bracket) 

Uo.t = Ul,x, Ul,t ~ btlUO,x. 

Some of the properties of  this system and its hierarchy may be found in [K85,FS]. 

As with the KP hierarchy, the Lax equation (19) is equivalent to a set of  zero-curvature 

relations for the Bn and these may be encoded into a 2-form I2 which satisfies the equations 

dl2 = 0, 12A 1 2 = 0  

in exactly the same way as was done for the KP hierarchy. 

4. Geometry of the KP hierarchy 

The main result of  the section is to show how a solution of the KP hierarchy may be 

associated to a solution of  a Riemann-Hilbert problem in the Lie group S DiffK (A42) (the 

Lie group corresponding to the Lie algebra s diffK (.Adz). Explicitly, given a map 

g(x, k) ) 

with {f, g} = 1 then this map factors, so there exists a map 

P 

where the right-hand side is analytic in k (the notation S_ will be used to denote the part 

of the Laurent series S consisting of  negative powers of  k only). The results derived in 

Section 2 enable existing results on the KP hierarchy to be lifted whilst furnishing them 

with a geometrical interpretation (the definitions of  the manifold .M and . -  and o-products 

will be the same as in Section 3.2). In this section x = 1 and the x-symbol on the exponential 

expK will be dropped. The main results of  this section are due to Takasaki and Takebe ['fT]. 
A more careful analysis is needed for x # 1. 

More fundamental than the Lax operator/2 is the operator W defined by 

W =- 1 qt- E ll)nO-n 
n=l 

with which the Lax operator is defined as 

£ = W O W  -I"  

The evolution of  the fields wn are given by the equation 

OW 
- 13nW - WO n 

3tn 



274 I.A.B. Strachan/Journal of Geometry and Physics 21 (1997) 255-278 

from which follows the Lax equation (16). On taking the symbols of  the operators one 

obtains 

oo 

= sym0/V) = 1 + W Wn k-n  ' 

n=l 
L = sym(£)  ---- Ad(W)k .  

The Orlov operator .A4 is defined by [GO] 

Jt4 = 142 ntnO -n + x )/V -I  

\ n =  1 

or, equivalently, by 

M ---- sym(.A4) ---- Ad(W exp[t(k)])x,  

where t ( k ) ~- Z n = l  tn kn" 

L e m m a  4. The pair  (L, M )  satisfy the equations 

OL OM 
- -  ---- {Bn,  L } ,  = {Bn,  M}, { L ,  M }  = 1. 
Ot,z Otn 

Conversel3; given such a pair  then there exists a unique dressing function W so that 

L = Ad(W)k  and M = A d ( W  exp[t(k)])x. 

Such a (L, M) pair will be said to satisfy the KP hierarchy. The first two of  these equations 

may be re-written as vector field equations: 

(Or,, - X B , ) L  = O, (Or, - X B , ) M  = O, 

or alternatively, using the inner product ( , ) between vector fields and forms, as 

(Ot. - -  X B , , ,  d L ) =  0, (Or, - XB, ,  dM) = 0 

for n = 1,2 . . . . .  0o. These functions (L, M) will play the analogous roles to the coordinates 

on the twistor surfaces in the non-linear graviton construction. 

The next theorems show how such a pair is related to a Riemann-Hilber t  factorisation 

problem. The first one shows how a solution to the Riemann-Hilber t  problem defines a 

solution to the KP hierarchy and the second one shows the converse. 

Theorem 2. Suppose one has functions 

L : A d ( W ) k ,  M : Ad(W exp[t(k)])x 

(with {L, M} = 1). Then f o r  any pair o f  functions f (x, k), g(x ,  k) (with Laurent series i f  

{f ,  g} : 1, f ( M ,  L)_  = O, g (M,  L)_  = O, 

then the pair (L, M)  satisfies the KP hierarch>: 
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Theorem 3. I f  the pair (L, M) satisfies the KP hierarchy then there exist functions f ,  g 

such that 

{f, g} = l, f ( M ,  L)_ = O, g(M, L)_ = O. 

The proofs are basically identical to the proofs in [T T], the only difference being that here 
they are reformulated in terms of the deformed geometric structures rather than in terms of 
pseudo-differential operators, One may also prove the uniqueness results for the solution 
(L, M), at least in the neighbourhood of the trivial solution (k, x). 

One outstanding problem is how to relate the 2-form g2 to the pair (L, M). In the dis- 

persionless limit one has (for all the systems discussed in Section 3) a relation 

g2 = dL A dM. 

However, the proof of this result relies on the associative property of normal multiplication 
which no longer holds for the deformed o-product. It may be that this result still holds, for 

example, the obstruction might vanish due to the relation {L, M} = 1. This problem, of 
how to understand the direct relation between the pair (L, M) and g2 is currently under 
investigation. 

5. Comments  

In summary, the three classes of integrable hierarchy discussed in Section 3 may all be 
formulated in terms of vector fields Vi which preserve a volume form 

OQ 

co= d x A  d y A A  dtn 
n = l  

(or w = dx A dy A d£ A d~ in the deformed anti-self-dual vacuum equations) on M ,  
together with function (L, M) which satisfy the equations 

Vi (L) : 0, Vi (M) = 0, 

or, in terms of the inner product between TAd and T*Ad, 

(12i, dL) = 0, (])i, dM) = 0 

with the functions L and M being independent: {L, M} = 1. A dual description also exists 
for all these systems in terms of a 2-form g2 on Ad satisfying the equations 

dg2 = 0, I2A g2 = 0 .  

The precise relationship between these two dual descriptions requires further investigation. 
In all cases the solutions are encoded in a Riemann-Hilbert problem in the corresponding 
loop group. 
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This work raises a number of further question. For example, it should be straightforward 

to examine the symmetries of these integrable systems using these methods, with the Hamil- 
tonian vector fields playing the role of the symmetry generators (see, for example [T94b]). 
This would provide a geometrical description of various W~ and WKp algebras. One use of 
such symmetries is in the construction of a constrained KP-hierarchy. One example of this 

contains the KdV hierarchy, However, the KdV hierarchy has been shown to be a reduction 
of the self-dual Yang-Mills equations (and its generalisations). Thus there are two way of 

looking at the KdV equation: one based on the Yang-Mills self-duality equation and one 

based on the deformed differential geometry constructed in Section 2. Precisely how these 
two seemingly different constructions are related deserves further study. In connection with 

this is how to understand the non-local nature of the Riemann-Hilbert problem for the KP 
equation compared with the local one for the KdV equation [AC,M]. 

All the examples of integrable systems in this paper have used Hamiltonian vector fieds in 
their construction. Are there any systems which use more general, non-Hamiltonian, vector 
fields? The property of commuting flows for these hierarchies can be traced back to the 

Jacobi identity for Hamiltonian vector fields, so any hierarchy based on non-Hamiltonian 
vector fields might lose this property. 

One possible use of this deformed calculus would be to develope a theory of deformed 
(or quantum) twistor spaces (which would encode the Riemann-Hilbert problems in the 

Moyal loop group) more axiomatically. One obvious place to start is to deform the sympletic 
structure on the fibres of the non-linear graviton's twistor space. An observation that might 
be of use is that *-product do exist on the complex manifold CP 3 and other complex coset 

spaces. This suggests that one should develop a deformation theory (in the sense of Kodaira) 
of such spaces. Such ideas, however, are outside the scope of this paper. 
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Note added in proof 

Since this paper was written a number of other papers have appeared. In [PP] and [G-CPP] 
the Moyal deformation of self-dual gravity has been studied using a chiral model approach 
and in [$96] it was shown that the Toda lattice is a reduction of this Moyal deformed self- 
dual gravity, a result analogous to the reduction from the standard, underformed, self-dual 
gravity equations to the Boyer-Finley equation. Other notable papers are [Ke], [KeS], [DM- 
H] and [R], which develop various connections between discrete systems, geometry and 
associative ,-products. 
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